Abstract
AbstractFilopodia assemble unique integrin-adhesion complexes to sense the extracellular matrix. However, the mechanisms of integrin localization and regulation in filopodia are poorly defined. Here, we observed that active integrins accumulate at the tip of myosin-X(MYO10)-positive filopodia while inactive integrins are uniformly distributed. RNAi depletion of 10 integrin activity modulators identified talin as the principal integrin activator in filopodia. Deletion of the MYO10-FERM domain, or mutation of the β1-integrin-binding residues within, revealed MYO10 as facilitating integrin activation but not transport in filopodia. However, MYO10-FERM alone could not activate integrins, potentially due to dual binding to both a- and β-integrin tails. As swapping MYO10-FERM with talin-FERM enabled integrin activation in filopodia, our data indicate that an integrin-binding FERM domain coupled to a myosin motor is a core requirement for integrin activation in filopodia. Therefore, we propose a two-step integrin activation model in filopodia: receptor tethering by MYO10 followed by talin-mediated integrin activation.
Publisher
Cold Spring Harbor Laboratory
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献