Quantifying Structural Diversity of CNG Trinucleotide Repeats Using Diagrammatic Algorithms

Author:

Phan Ethan N. H.,Mak Chi H.

Abstract

ABSTRACTTrinucleotide repeat expansion disorders (TREDs) exhibit complex mechanisms of pathogenesis, some of which have been attributed to RNA transcripts of overexpanded CNG repeats, resulting in possibly a gain-of-function. In this paper, we aim to probe the structures of these expanded transcript by analyzing the structural diversity of their conformational ensembles. We used graphs to catalog the structures of an NG-(CNG)16-CN and NG-(CNG)50-CN oligomer and grouped them into sub-ensembles based on their characters and calculated the structural diversity and thermodynamic stability for these ensembles using a previously described graph factorization scheme. Our findings show that the generally assumed structure for CNG repeats—a series of canonical helices connected by two-way junctions and capped with a hairpin loop—may not be the most thermodynamically favorable, and the ensembles are characterized by largely open and less structured conformations. Furthermore, a length-dependence is observed for the behavior of the ensembles’ diversity as higher-order diagrams are included, suggesting that further studies of CNG repeats are needed at the length scale of TREDs onset to properly understand their structural diversity and how this might relate to their functions.STATEMENT OF SIGNIFICANCETrinucleotide repeats are DNA satellites that are prone to mutations in the human genome. A family of diverse disorders are associated with an overexpansion of CNG repeats occurring in noncoding regions, and the RNA transcripts of the expanded regions have been implicated as the origin of toxicity. Our understanding of the structures of these expanded RNA transcripts is based on sequences that have limited lengths compared to the scale of the expanded transcripts found in patients. In this paper, we introduce a theoretical method aimed at analyzing the structure and conformational diversity of CNG repeats, which has the potential of overcoming the current length limitations in the studies of trinucleotide repeat sequences.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3