Conserved long-range base pairings are associated with pre-mRNA processing of human genes

Author:

Kalmykova Svetlana,Kalinina Marina,Denisov Stepan,Mironov Alexey,Skvortsov Dmitry,Guigó Roderic,Pervouchine Dmitri

Abstract

AbstractThe ability of nucleic acids to form double-stranded structures is essential for all living systems on Earth. While DNA employs it for genome replication, RNA molecules fold into complicated secondary and tertiary structures. Current knowledge on functional RNA structures in human protein-coding genes is focused on locally-occurring base pairs. However, chemical crosslinking and proximity ligation experiments have demonstrated that long-range RNA structures are highly abundant. Here, we present the most complete to-date catalog of conserved long-range RNA structures in the human transcriptome, which consists of 916,360 pairs of conserved complementary regions (PCCRs). PCCRs tend to occur within introns proximally to splice sites, suppress intervening exons, circumscribe circular RNAs, and exert an obstructive effect on cryptic and inactive splice sites. The double-stranded structure of PCCRs is supported by a significant decrease of icSHAPE nucleotide accessibility, high abundance of A-to-I RNA editing sites, and frequent occurrence of forked eCLIP peaks nearby. Introns with PCCRs show a distinct splicing pattern in response to RNA Pol II slowdown suggesting that splicing is widely affected by co-transcriptional RNA folding. Additionally, transcript starts and ends are strongly enriched in regions between complementary parts of PCCRs, leading to an intriguing hypothesis that RNA folding coupled with splicing could mediate co-transcriptional suppression of premature cleavage and polyadenylation events. PCCR detection procedure is highly sensitive with respect to bona fide validated RNA structures at the expense of having a high false positive rate, which cannot be reduced without loss of sensitivity. The catalog of PCCRs is visualized through a UCSC Genome Browser track hub.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3