Rapid self-selecting and clone-free integration of transgenes into engineered CRISPR safe harbor locations in Caenorhabditis elegans

Author:

Stevenson Zachary C.ORCID,Moerdyk-Schauwecker Megan J.,Jamison Brennen,Phillips Patrick C.ORCID

Abstract

AbstractPrecision genome editing for model organisms has revolutionized functional analysis and validation of a wide variety of molecular systems. To date, the capacity to insert transgenes into the model nematode Caenorhabditis elegans has focused on utilizing either transposable elements or CRISPR-based safe harbor strategies. These methods require laborious screening processes that often result in false positives from heritable extrachromosomal arrays or rely on co-CRISPR markers to identify likely edited individuals. As a result, verification of transgene insertion requires anti-array selection screening methods or extensive PCR genotyping respectively. These approaches also rely on cloning plasmids for the addition of transgenes. Here, we present a novel safe harbor CRISPR-based integration strategy that utilizes engineered insertion locations containing a synthetic guide RNA target and a split-selection system to eliminate false positives from array formation, thereby providing integration-specific selection. This approach allows the experimenter to confirm an integration event has taken place without molecular validation or anti-array screening methods, and is capable of producing integrated transgenic lines in as little as five days post-injection. To further increase the speed of generating transgenic lines, we also utilized the C. elegans native homology-based formation of extra-chromosomal arrays to assemble transgenes in-situ, removing the cloning step. We show that complete transgenes can be made and inserted into our split-selection safe harbor locations starting from PCR products, providing a clone-free and molecular-validation-free strategy for single-copy transgene integration. Overall, this combination of approaches provides an economical and rapid system for generating highly reproducible complex transgenics in C. elegans.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3