Author:
Ultee Eveline,Briegel Ariane,Claessen Dennis
Abstract
ABSTRACTThe cell wall is considered an essential component for bacterial survival, providing structural support and protection from environmental insults. Under normal growth conditions, filamentous actinobacteria insert new cell wall material at the hyphal tips regulated by the coordinated activity of cytoskeletal proteins and cell wall biosynthetic enzymes. Despite the importance of the cell wall, some filamentous actinobacteria can produce wall-deficient S-cells upon prolonged exposure to hyperosmotic stress. Here we performed cryo-electron tomography and live cell imaging to further characterize S-cell extrusion in Kitasatospora viridifaciens. We show that exposure to hyperosmotic stress leads to DNA compaction, membrane and S-cell extrusion and thinning of the cell wall at hyphal tips. Additionally, we find that the extrusion of S-cells is abolished in a cytoskeletal mutant strain that lacks the intermediate filament-like protein FilP. Furthermore, micro-aerobic culturing promotes the formation of S-cells in the wild-type, but the limited oxygen still impedes S-cell formation in the ΔfilP mutant. These results demonstrate that S-cell formation is stimulated by oxygen-limiting conditions and dependent on the presence of an intact cytoskeleton.
Publisher
Cold Spring Harbor Laboratory