Evolution is exponentially more powerful with frequency-dependent selection

Author:

Kaznatcheev Artem

Abstract

AbstractValiant [1] proposed to treat Darwinian evolution as a special kind of computational learning from statistical queries. The statistical queries represent a genotype’s fitness over a distribution of challenges. And this distribution of challenges along with the best response to them specify a given abiotic environment or static fitness landscape. Valiant’s model distinguished families of environments that are “adaptable-to” from those that are not. But this model of evolution omits the vital ecological interactions between different evolving agents – it neglects the rich biotic environment that is central to the struggle for existence.In this article, I extend algorithmic Darwinism to include the ecological dynamics of frequency-dependent selection as a population-dependent bias to the distribution of challenges that specify an environment. Thus, extended algorithmic Darwinism suggests extended statistical queries rather than just statistical queries as the appropriate model for eco-evo dynamics. This extended algorithmic Darwinism replaces simple invasion of wild-type by a mutant-type of higher scalar fitness with an evolutionary game between wild-type and mutant-type based on their frequency-dependent fitness function. To analyze this model, I develop a game landscape view of evolution, as a generalization of the classic fitness landscape approach.I show that this model of eco-evo dynamics on game landscapes can provide an exponential speed-up over the purely evolutionary dynamics of the strict algorithmic Darwinism. In particular, I prove that the Parity environment – which is known to be not adaptable-to under strict algorithmic Darwinism – is adaptable-to by eco-evo dynamics. Thus, the ecology of frequency-dependent selection does not just increase the tempo of evolution, but fundamentally transforms its mode. This happens even if frequency-dependence is restricted to short-time scales – such short bursts of frequency-dependent selection can have a transformative effect on the ability of populations to adapt to their environments in the long-term.Unlike typical learning algorithms, the eco-evo dynamic for adapting to the Parity environment does not rely on Gaussian elimination. Instead, the dynamics proceed by simple isotropic mutations and selection in finite populations of just two types (the resident wild-type and invading mutant). The resultant process has two stages: (1) a quick stage of point-mutations that moves the population to one of exponentially many local fitness peaks; followed by (2) a slower stage where each ‘step’ follows a double-mutation by a point-mutation. This second stage allows the population to hop between local fitness peaks to reach the unique global fitness peak in polynomial time. The evolutionary game dynamics of finite populations are essential for finding a short adaptive path to the global fitness peak during the second stage of the adaptation process. This highlights the rich interface between computational learning theory, analysis of algorithms, evolutionary games, and long-term evolution.

Publisher

Cold Spring Harbor Laboratory

Reference52 articles.

1. Evolvability;Journal of the ACM 1,2009

2. Computational Complexity as an Ultimate Constraint on Evolution

3. Representing fitness landscapes by valued constraints to understand the complexity of local search;Journal of Artificial Intelligence Research,2020

4. Long‐Term Experimental Evolution inEscherichia coli. VIII. Dynamics of a Balanced Polymorphism

5. Long-term experimental evolution in Escherichia coli. XIII;Phylogenetic history of a balanced polymorphism. Journal of Molecular Evolution,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3