Direct detection of RNA modifications and structure using single molecule nanopore sequencing

Author:

Stephenson WilliamORCID,Razaghi Roham,Busan Steven,Weeks Kevin M.,Timp WinstonORCID,Smibert PeterORCID

Abstract

ABSTRACTMany methods exist to detect RNA modifications by short-read sequencing, relying on either antibody enrichment of transcripts bearing modified bases or mutational profiling approaches which require conversion to cDNA. Endogenous modifications are present on several major classes of RNA including tRNA, rRNA and mRNA and can modulate diverse biological processes such as genetic recoding, mRNA export and RNA folding. In addition, exogenous modifications can be introduced to RNA molecules to reveal RNA structure and dynamics. Limitations on read length and library size inherent in short-read-based methods dissociate modifications from their native context, preventing single molecule analysis and modification phasing. Here we demonstrate direct RNA nanopore sequencing to detect endogenous and exogenous RNA modifications over long sequence distance at the single molecule level. We demonstrate comprehensive detection of endogenous modifications in E. coli and S. cerevisiae ribosomal RNA (rRNA) using current signal deviations. Notably 2’-O-methyl (Nm) modifications generated a discernible shift in current signal and event level dwell times. We show that dwell times are mediated by the RNA motor protein which sits atop the nanopore. Further, we characterize a recently described small adduct-generating 2’-O-acylation reagent, acetylimidazole (AcIm) for exogenously labeling flexible nucleotides in RNA. Finally, we demonstrate the utility of AcIm for single molecule RNA structural probing using nanopore sequencing.Graphical abstract

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3