Abstract
AbstractSunlight drives daily rhythms of photosynthesis, growth, and division of photoautotrophs throughout the surface oceans. However, the cascading impacts of oscillatory light input on diverse microbial communities and community-scale metabolism remains unclear. Here we use an unsupervised machine learning approach to show that a small number of diel archetypes can explain pervasive periodic dynamics amongst more than 65,000 distinct time series, including transcriptional activity, macromolecules, lipids, and metabolites from the North Pacific Subtropical Gyre. Overall, we find evidence for synchronous timing of carbon-cycle gene expression that underlie daily oscillations in the concentrations of particulate organic carbon. In contrast, we find evidence of asynchronous timing in gene transcription related to nitrogen metabolism and related metabolic processes consistent with temporal niche partitioning amongst microorganisms in the bacterial and eukaryotic domains.
Publisher
Cold Spring Harbor Laboratory
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献