High-Throughput Human Primary Cell-Based Airway Model for Evaluating Influenza, Coronavirus, or other Respiratory Viruses in vitro

Author:

Gard A.L.,Maloney R.,Cain B.P.,Miller C.R.,Luu R.J.,Coppeta J.R.,Liu P.,Wang J.P.,Azizgolshani H.,Fezzie R.F.,Balestrini J.L.,Isenberg B.C.,Finberg R.W.,Borenstein J.T.ORCID

Abstract

AbstractInfluenza and other respiratory viruses represent a significant threat to public health, national security, and the world economy, and can lead to the emergence of global pandemics such as the current COVID-19 crisis. One of the greatest barriers to the development of effective therapeutic agents to treat influenza, coronaviruses, and many other infections of the respiratory tract is the absence of a robust preclinical model. Preclinical studies currently rely on high-throughput, low-fidelity in vitro screening with cell lines and/or low-throughput animal models that often provide a poor correlation to human clinical responses. Here, we introduce a human primary airway epithelial cell-based model integrated into a high-throughput platform where tissues are cultured at an air-liquid interface (PREDICT96-ALI). We present results on the application of this platform to influenza and coronavirus infections, providing multiple readouts capable of evaluating viral infection kinetics and potentially the efficacy of therapeutic agents in an in vitro system. Several strains of influenza A virus are shown to successfully infect the human primary cell-based airway tissue cultured at an air-liquid interface (ALI), and as a proof-of-concept, the effect of the antiviral oseltamivir on one strain of Influenza A is evaluated. Human coronaviruses NL63 (HCoV-NL63) and SARS-CoV-2 enter host cells via ACE2 and utilize the protease TMPRSS2 for protein priming, and we confirm expression of both in our ALI model. We also demonstrate coronavirus infection in this system with HCoV-NL63, observing sufficient viral propagation over 96 hours post-infection to indicate successful infection of the primary cell-based model. This new capability has the potential to address a gap in the rapid assessment of therapeutic efficacy of various small molecules and antiviral agents against influenza and other respiratory viruses including coronaviruses.

Publisher

Cold Spring Harbor Laboratory

Reference36 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3