Anti-inflammatory dopamine- and serotonin-based endocannabinoid epoxides reciprocally regulate cannabinoid receptors and the TRPV1 channel

Author:

Arnold William R.,Carnevale Lauren N.,Xie Zili,Baylon Javier L.,Tajkhorshid Emad,Hu Hongzhen,Das Aditi

Abstract

ABSTRACTThe endocannabinoid (eCB) system is a promising target to mitigate pain as the eCBs are endogenous ligands of the pain-mediating receptors—cannabinoid receptors 1 and 2 (CB1 and CB2) and TRPV1. Here we report on a novel class of lipids formed by the epoxidation of N-arachidonoyl-dopamine (NADA) and N-arachidonoyl serotonin (NA5HT) by cytochrome P450 (CYP) epoxygenases. These epoxides (epoNADA and epoNA5HT) are dual-functional rheostat modulators (varying strength of agonism or antagonism) of the eCB-TRPV1 axis. In fact, epoNADA is a 6-fold stronger agonist of TRPV1 than NADA while epoNA5HT is a 30-fold stronger antagonist of TRPV1 than NA5HT and displays a significantly stronger inhibition on TRPV1-mediated responses in primary afferent neurons. Moreover, epoNA5HT is a full CB1 agonist. The epoxides reduce the pro-inflammatory biomarkers IL-6, IL-1β, TNF-α and nitrous oxide (NO) and raise anti-inflammatory IL-10 in activated microglial cells. The epoxides are spontaneously generated by activated microglia cells and their formation is potentiated in the presence of another eCB, anandamide (AEA). We provide evidence for the direct biochemical mechanism of this potentiation using human CYP2J2, a CYP epoxygenase in the human brain, using detailed kinetics studies and molecular dynamics simulations. Taken all together, inflammation leads to an increase in the metabolism of NADA, NA5HT and other eCBs by CYP epoxygenases to form the corresponding epoxides. The epoxide metabolites are bioactive lipids that are more potent, multi-faceted endogenous molecules, capable of influencing the activity of CB1, CB2 and TRPV1 receptors. The identification of these molecules will serve as templates for the synthesis of new multi-target therapeutics for the treatment of inflammatory pain.

Publisher

Cold Spring Harbor Laboratory

Reference106 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3