Uncertainty Quantification in Radiogenomics: EGFR Amplification in Glioblastoma

Author:

Hu Leland S.,Wang Lujia,Hawkins-Daarud Andrea,Eschbacher Jennifer M.,Singleton Kyle W.,Jackson Pamela R.,Clark-Swanson Kamala,Sereduk Christopher P.,Peng Sen,Wang Panwen,Wang Junwen,Baxter Leslie C.,Smith Kris A.,Mazza Gina L.,Stokes Ashley M.,Bendok Bernard R.,Zimmerman Richard S.,Krishna Chandan,Porter Alyx B.,Mrugala Maciej M.,Hoxworth Joseph M.,Wu Teresa,Tran Nhan L.,Swanson Kristin R.,Li Jing

Abstract

ABSTRACTBACKGROUNDRadiogenomics uses machine-learning (ML) to directly connect the morphologic and physiological appearance of tumors on clinical imaging with underlying genomic features. Despite extensive growth in the area of radiogenomics across many cancers, and its potential role in advancing clinical decision making, no published studies have directly addressed uncertainty in these model predictions.METHODSWe developed a radiogenomics ML model to quantify uncertainty using transductive Gaussian Processes (GP) and a unique dataset of 95 image-localized biopsies with spatially matched MRI from 25 untreated Glioblastoma (GBM) patients. The model generated predictions for regional EGFR amplification status (a common and important target in GBM) to resolve the intratumoral genetic heterogeneity across each individual tumor - a key factor for future personalized therapeutic paradigms. The model used probability distributions for each sample prediction to quantify uncertainty, and used transductive learning to reduce the overall uncertainty. We compared predictive accuracy and uncertainty of the transductive learning GP model against a standard GP model using leave-one-patient-out cross validation.RESULTSPredictive uncertainty informed the likelihood of achieving an accurate sample prediction. When stratifying predictions based on uncertainty, we observed substantially higher performance in the group cohort (75% accuracy, n=95) and amongst sample predictions with the lowest uncertainty (83% accuracy, n=72) compared to predictions with higher uncertainty (48% accuracy, n=23), due largely to data interpolation (rather than extrapolation).CONCLUSIONWe present a novel approach to quantify radiogenomics uncertainty to enhance model performance and clinical interpretability. This should help integrate more reliable radiogenomics models for improved medical decision-making.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3