Abstract
AbstractDNA ligases, essential enzymes which re-join the backbone of DNA come in two structurally-distinct isoforms, NAD-dependent and ATP-dependent, which differ in cofactor usage. The present view is that all bacteria exclusively use NAD-dependent DNA ligases for DNA replication, while archaea and eukaryotes use ATP-dependent DNA ligases. Some bacteria also possess auxiliary ATP-dependent DNA ligases; however, these are only employed for specialist DNA repair processes. Here we show that in the genomes of high-light strains of the marine cyanobacterium Prochlorococcocus marinus, an ATP-dependent DNA ligase has replaced the NAD-dependent form, overturning the present paradigm of a clear evolutionary split in ligase usage. Genes encoding partial NAD-dependent DNA ligases are found on mobile regions in highlight genomes and lack domains required for catalytic function. This constitutes the first reported example of a bacterium that relies on an ATP-dependent DNA ligase for DNA replication and recommends P. marinus as a model to investigate the evolutionary origins of these essential DNA-processing enzymes.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献