A putative long noncoding RNA-encoded micropeptide maintains cellular homeostasis in pancreatic β-cells

Author:

Li Mark,Shao Fan,Qian Qingwen,Yu Wenjie,Zhang Zeyuan,Chen Biyi,Su Dan,Guo Yuwei,Phan An-Vi,Song Long-sheng,Stephens Samuel B.,Sebag Julien,Imai Yumi,Yang Ling,Cao Huojun

Abstract

ABSTRACTMicropeptides (microproteins) encoded by transcripts previously annotated as long noncoding RNA (IncRNAs) are emerging as important mediators of fundamental biological processes in health and disease. Here we applied two computational tools to identify putative micropeptides encoded by lncRNAs that are expressed in the human pancreas. We experimentally verified one such micropeptide encoded by a β-cell- and neural cell-enriched lncRNA TUNAR (also known as TUNA, HI-LNC78 or LINC00617). We named this highly conserved 48-amino-acid micropeptide Beta cell- and Neural cell-regulin (BNLN). BNLN contains a single-pass transmembrane domain and localized at the endoplasmic reticulum in pancreatic β-cells. Overexpression of BNLN lowered ER calcium levels, increased cytosolic calcium levels, and maintained ER homeostasis in response to high glucose challenge. To determine the physiological and pathological roles of BNLN, we assessed the BNLN expression in islets from mice fed with a high-fat diet and a regular diet, and found that BNLN is suppressed by diet-induced obesity (DIO). Conversely, overexpression of BNLN elevated glucose-stimulated insulin secretion in INS-1 cells. Lastly, BNLN overexpression enhanced insulin secretion in islets from lean and obese mice as well as from humans. Taken together, our study provides the first evidence that lncRNA-encoded micropeptides play a critical role in pancreatic β-cell function and provides a foundation for future comprehensive analyses of micropeptide function and pathophysiological impact on diabetes.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3