Gut microbial ecology of Xenopus tadpoles across life stages

Author:

Scalvenzi Thibault,Clavereau Isabelle,Bourge Mickaël,Pollet NicolasORCID

Abstract

ABSTRACTBackgroundThe microorganism world living in amphibians is still largely under-represented and under-studied in the literature. Among anuran amphibians, African clawed frogs of the Xenopus genus stand as well-characterized models with an in-depth knowledge of their developmental biological processes including their metamorphosis. In this study, we analyzed the succession of microbial communities and their activities across diverse body habitats of Xenopus tropicalis using different approaches including flow cytometry and 16s rDNA gene metabarcoding. We also evaluated the metabolic capacity of the premetamorphic tadpole’s gut microbiome using metagenomic and metatranscriptomic sequencing.ResultsWe analyzed the bacterial components of the Xenopus gut microbiota, the adult gut biogeography, the succession of communities during ontogeny, the impact of the alimentation in shaping the tadpole’s gut bacterial communities and the transmission of skin and fecal bacteria to the eggs. We also identified the most active gut bacteria and their metabolic contribution to tadpole physiology including carbohydrate breakdown, nitrogen recycling, essential amino-acids and vitamin biosynthesis.ConclusionsWe present a comprehensive new microbiome dataset of a laboratory amphibian model. Our data provide evidences that studies on the Xenopus tadpole model can shed light on the interactions between a vertebrate host and its microbiome. We interpret our findings in light of bile acids being key molecular components regulating the gut microbiome composition during amphibian development and metamorphosis. Further studies into the metabolic interactions between amphibian tadpoles and their microbiota during early development and metamorphosis should provide useful information on the evolution of host-microbiota interactions in vertebrates.This article has been peer-reviewed and recommended by Peer Community in Genomicshttps://doi.org/10.24072/pci.genomics.100005

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3