Abstract
AbstractThe visual systems of teleost fishes usually match their habitats and lifestyles. Since coral reefs are bright and colourful environments, the visual systems of their diurnal inhabitants have been more extensively studied than those of nocturnal species. In order to fill this knowledge gap, we conducted a detailed investigation of the visual systems of the coral reef fish family Holocentridae (squirrelfish and soldierfish). In addition to their nocturnality, this family is particularly interesting for dim-light vision studies due to its ecological and evolutionary connection to deeper habitats. Results showed that the visual system of holocentrids is well adapted to their nocturnal lifestyle with a rod-dominated retina. Surprisingly, rods in all species were arranged into 6-17 well-defined banks, a feature most commonly found in deep-sea fishes, that may increase the light sensitivity of the eye and/or allow colour discrimination in dim-light. Holocentrids also have the potential for dichromatic colour vision during the day with the presence of at least two spectrally different cone types: single cones expressing the blue-sensitive SWS2A gene, and double cones expressing one or two green-sensitive RH2 genes. Some differences were observed between the two subfamilies, with Holocentrinae having a slightly more developed photopic visual system than Myripristinae. Moreover, retinal topography of both ganglion cells and cone photoreceptors showed specific patterns for each cell type, likely highlighting different visual demands at different times of the day, such as feeding. Overall, their well-developed scotopic visual systems and the ease of catching and maintaining holocentrids in aquaria, make them ideal models to investigate teleost dim-light vision and more particularly shed light on the function of multibank retina and its potential for dim-light colour vision.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献