On Using Transfer Learning For Plant Disease Detection

Author:

Sagar Abhinav,Jacob Dheeba

Abstract

AbstractDeep neural networks has been highly successful in image classification problems. In this paper, we show how neural networks can be used for plant disease recognition in the context of image classification. We have used publicly available Plant Village dataset which has 38 classes of diseases. Hence, the problem that we have addressed is a multi class classification problem. We compared five different architectures including VGG16, ResNet50, InceptionV3, InceptionResNet and DenseNet169 as the backbones for our work. We found that ResNet50 achieves the best result on the test set. For evaluation, we used metrics: accuracy, precision, recall, F1 score and class wise confusion metric. Our model achieves the best of results using ResNet50 with accuracy of 0.982, precision of 0.94, recall of 0.94 and F1 score of 0.94.

Publisher

Cold Spring Harbor Laboratory

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Automatic plant disease detection using computationally efficient convolutional neural network;Engineering Reports;2024-06-13

2. Detection of plant leaf disease using advanced deep learning architectures;International Journal of Information Technology;2024-05-29

3. An In-Depth Exploration of ResNet-50 and Transfer Learning in Plant Disease Diagnosis;2024 International Conference on Inventive Computation Technologies (ICICT);2024-04-24

4. Redes Neurais Convolucionais para detecção do Cancro Europeu das Pomáceas;Anais da XIX Escola Regional de Banco de Dados (ERBD 2024);2024-04-10

5. Leaf Disease Classification of Various Crops Using Deep Learning Based DBESeriesNet Model;SN Computer Science;2024-04-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3