Abstract
ABSTRACTThe ventral posterior hypothalamus (VPH) is an anatomically complex brain region implicated in arousal, reproduction, energy balance and memory processing. However, neuronal cell type diversity within the VPH is poorly understood, an impediment to deconstructing the roles of distinct VPH circuits in physiology and behavior. To address this question, we employed a droplet-based single cell RNA sequencing (scRNA-seq) approach to systematically classify molecularly distinct cell types in the mouse VPH. Analysis of >16,000 single cells revealed 20 neuronal and 18 non-neuronal cell populations, defined by suites of discriminatory markers. We validated differentially expressed genes in a selection of neuronal populations through fluorescence in situ hybridization (FISH). Focusing on the mammillary bodies (MB), we discovered transcriptionally-distinct clusters that exhibit a surprising degree of segregation within neuroanatomical subdivisions of the MB, while genetically-defined MB cell types project topographically to the anterior thalamus. This single cell transcriptomic atlas of cell types in the VPH provides a detailed resource for interrogating the circuit-level mechanisms underlying the diverse functions of VPH circuits in health and disease.
Publisher
Cold Spring Harbor Laboratory