iDePP: a genetically encoded system for the inducible depletion of PI(4,5)P2 in Arabidopsis thaliana

Author:

Doumane Mehdi,Colin LéiaORCID,Lebecq AlexisORCID,Fangain Aurélie,Bareille JosephORCID,Hamant OlivierORCID,Belkhadir YoussefORCID,Jaillais YvonORCID,Caillaud Marie-CécileORCID

Abstract

ABSTRACTPhosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] is a low abundant lipid present at the plasma membrane of eukaryotic cells. Extensive studies in animal cells revealed the pleiotropic functions of PI(4,5)P2. In plant cells, PI(4,5)P2 is involved in various cellular processes including the regulation of cell polarity and tip growth, clathrin-mediated endocytosis, polar auxin transport, actin dynamics or membrane-contact sites. To date, most studies investigating the role of PI(4,5)P2 in plants have relied on mutants lacking enzymes responsible for PI(4,5)P2 synthesis and degradation. However, such genetic perturbations only allow steady-state analysis of plants undergoing their life cycle in PI(4,5)P2 deficient conditions and the corresponding mutants are likely to induce a range of non-causal (untargeted) effects driven by compensatory mechanisms. In addition, there are no small molecule inhibitors that are available in plants to specifically block the production of this lipid. Thus, there is currently no system to fine tune PI(4,5)P2 content in plant cells. Here we report a genetically encoded and inducible synthetic system, iDePP (Inducible Depletion of PI(4,5)P2 in Plants), that efficiently removes PI(4,5)P2 from the plasma membrane in different organs of Arabidopsis thaliana, including root meristem, root hair and shoot apical meristem. We show that iDePP allows the inducible depletion of PI(4,5)P2 in less than three hours. Using this strategy, we reveal that PI(4,5)P2 is critical for cortical microtubule organization. Together, we propose that iDePP is a simple and efficient genetic tool to test the importance of PI(4,5)P2 in given cellular or developmental responses but also to evaluate the importance of this lipid in protein localization.Research OrganismA. thaliana

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3