Untargeted metabolome- and transcriptome-wide association study identifies causal genes modulating metabolite concentrations in urine

Author:

Flitman Reyhan Sönmez,Khalili Bita,Kutalik Zoltan,Rueedi Rico,Bergmann Sven

Abstract

SummaryIn this study we investigate the results of a metabolome- and transcriptome-wide association study to identify genes influencing the human metabolome. We used RNAseq data from lymphoblastoid cell lines (LCLs) derived from 555 Caucasian individuals to characterize their transcriptome. As for the metabolome we took an untargeted approach using binned features from 1H nuclear magnetic resonance spectroscopy (NMR) of urine samples from the same subjects allowing for data-driven discovery of associated compounds (rather than working with a limited set of quantified metabolites).Using pairwise linear regression we identified 21 study-wide significant associations between metabolome features and gene expression levels. We observed the most significant association between the gene ALMS1 and two adjacent metabolome features at 2.0325 and 2.0375 ppm. By using our previously developed metabomatching methodology, we found N-Acetylaspartate (NAA) as the potential underlying metabolite whose urine concentration is correlated with ALMS1 expression. Indeed, a number of metabolome- and genome-wide association studies (mGWAS) had already suggested the locus of this gene to be involved in regulation of N-acetylated compounds, yet were not able to identify unambiguously the exact metabolite, nor to disambiguate between ALMS1 and NAT8, another gene found in the same locus as the mediator gene. The second highest significant association was observed between HPS1 and two metabolome features at 2.8575 and 2.8725 ppm. Metabomatching of the association profile of HPS1 with all metabolite features pointed at trimethylamine (TMA) as the most likely underlying metabolite. mGWAS had previously implicated a locus containing HPS1 to be associated with TMA concentrations in urine but could not disambiguate this association signal from PYROXD2, a gene in the same locus. We used Mendelian randomization to show for both ALMS1 and HPS1 that their expression is causally linked to the respective metabolite concentrations.Our study provides evidence that the integration of metabolomics with gene expression data can support mQTL analysis, helping to identify the most likely gene involved in the modulation of the metabolite concentration.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3