Biochemical and Molecular Characterization, and Bioprospecting of Drought Tolerant Actinomycetes from Maize Rhizosphere Soil

Author:

Chukwuneme Chinenyenwa Fortune,Babalola Olubukola OlurantiORCID,Kutu Funso Raphael,Ojuederie Omena BernardORCID

Abstract

AbstractDrought is a major limitation to maize cultivation around the globe. Seven actinomycetes strains were isolated from maize rhizosphere soils in Mahikeng, North-West Province, South Africa. The isolates were biochemically characterized and identified with 16S rRNA gene sequence analysis. Isolates were also screened in vitro for abiotic stress tolerance to different concentrations of NaCl, pH, and polyethylene glycol (PEG 8000), as well as for biosynthesis of drought tolerance genes namely Glutathione peroxidase (GPX), Glycine-rich RNA binding protein (GRP), Desiccation protectant protein (DSP), Guanosine triphosphate binding protein (GTP) and plant growth-promoting genes:1-aminocyclopropane-1-carboxylate deaminase (accd) and siderophore biosynthesis (Sid). About 71.43% of isolates were of the genus Streptomyces (99-100% similarity), while 14.29% belong to the genus Arthrobacter (R15) and 14.29% to the genus Microbacterium (S11) respectively (99% similarity). Five isolates had their optimum growth at 35°C. Arthrobacter arilaitensis (R15) grew and tolerated 5%, 10%, and 20% PEG at 120 h. Root length increased by 110.53% in PEG treated maize seeds (−0.30 MPa) inoculated with Streptomyces pseudovenezuelae (S20) compared to the un-inoculated control. Likewise, germination percentage and vigor index increased by 37.53% and 194.81% respectively in PEG treated seeds inoculated with S20 than the un-inoculated PEG treated seeds. ACC deaminase gene was amplified in all the isolates, while the gene for siderophore biosynthesis was amplified in 85.71% of the isolates. Genes for the synthesis of GPX, GRP, DSP and GTP were amplified in Arthrobacter arilaitensis (R15) and Streptomyces pseudovenezuelae (S20) which lacked GTP. The amplification of drought-tolerant and plant growth-promoting primers indicates the possible presence of these genes in the isolates. These isolates have the potential for use as bio-inoculants, not only to improve drought tolerance in maize but also to be utilized as biofertilizers and biocontrol agents to facilitate growth promotion.

Publisher

Cold Spring Harbor Laboratory

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3