The eIF2α kinase HRI triggers the autophagic clearance of cytosolic protein aggregates

Author:

Abdel-Nour Mena,Ramaglia Valeria,Bianchi Athanasia A.,Tsalikis Jessica,Chau Hien N.,Kalia Suneil K.,Kalia Lorraine V.,Chen Jane-Jane,Arnoult Damien,Gommerman Jennifer L.,Philpott Dana J.,Girardin Stephen E.

Abstract

ABSTRACTLarge cytosolic protein aggregates are removed by two main cellular processes, autophagy and the ubiquitin-proteasome system (UPS), and defective clearance of these protein aggregates results in proteotoxicity and cell death. Here we show that the eIF2α kinase HRI potentiates the autophagic clearance of cytosolic protein aggregates when the UPS is inhibited. In cells silenced for HRI, proteasome inhibition resulted in accumulation of aggresomes and ubiquitinated proteins, as well as cytotoxicity. Moreover, silencing of HRI resulted in cytotoxic accumulation of over-expressed α-synuclein, a protein known to aggregate in Parkinson’s disease, dementia with Lewy bodies, and multiple system atrophy. In agreement, protein aggregate accumulation and microglia activation were observed in the spinal cord white matter of 7-month old Hri-/- mice as compared to Hri+/+ littermates. Moreover, aged Hri-/- mice showed accumulation of misfolded α-synuclein, indicative of misfolded proteins, in the lateral collateral pathway, a region of the sacral spinal cord horn that receives visceral sensory afferents from the bladder and distal colon, a pathological feature common to α-synucleinopathies in humans where it may contribute to impaired micturition and/or constipation. Together, these results suggest that HRI contributes to a general cytosolic unfolded protein response (cUPR) that could be leveraged to bolster the clearance of cytotoxic protein aggregates.

Publisher

Cold Spring Harbor Laboratory

Reference42 articles.

1. Protein Misfolding Diseases

2. Protein Quality Control by Molecular Chaperones in Neurodegeneration;Frontiers in neuroscience,2017

3. Protein misfolding in neurodegenerative diseases: implications and strategies;Translational neurodegeneration,2017

4. The integrated stress response

5. Translational control by heme-regulated eIF2α kinase during erythropoiesis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3