Competing interactions modulate the activity of Sgs1 during DNA end resection

Author:

Kasaciunaite Kristina,Fettes Fergus,Levikova Maryna,Daldrop Peter,Cejka Petr,Seidel RalfORCID

Abstract

AbstractDNA double-strand break repair by homologous recombination employs long-range resection of the 5’ DNA ends at the break points. In Saccharomyces cerevisiae, this process can be performed by the RecQ helicase Sgs1 and the helicase-nuclease Dna2. Though functional interplay has been shown, it remains unclear whether and how the proteins cooperate on the molecular level. Here, we resolved the dynamics of DNA unwinding by Sgs1 at the single molecule level and investigated its regulation by Dna2, the single-stranded DNA binding protein RPA and the Top3-Rmi1 complex. We found that Dna2 modulates the velocity of Sgs1, indicating that during end resection the proteins form a physical complex and couple their activities. Sgs1 unwinds DNA and feeds single-stranded DNA to Dna2 for degradation. RPA is found to regulate the processivity and the affinity of Sgs1 to the DNA fork, while Top3-Rmi1 modulated the velocity of Sgs1. We think that the differential regulation of the Sgs1 activity by its protein partners is important to allow diverse cellular functions of Sgs1 during the maintenance of genome stability.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3