Abstract
ABSTRACTThe stochastic tip dynamics of a primary cilium held within an optical trap is quantified by combining experimental, analytical and computational tools. Primary cilia are cellular organelles, present on most vertebrate cells, hypothesized to function as a fluid flow sensor. The mechanical properties of a cilium remain incompletely characterized. We measured the fluctuating position of an optically trapped cilium tip under untreated, Taxol-treated, and HIF-stabilized conditions. We applied analytical modeling to derive the mean-squared displacement of the trapped tip of a cilium and compared the results with experimental measurements. We provide, for the first time, evidence that the effective flexural rigidity of a ciliary axoneme is length-dependent, and longer cilia are stiffer than shorter cilia. We then provide a rational explanation for both effects. We demonstrate that the apparent length-dependent flexural rigidity can be understood by a combination of modeling axonemal microtubules orthotropic elastic shells and including (actin-driven) active stochastic basal body motion. It is hoped that our improved characterization of cilia will result in deeper understanding of the biological function of cellular flow sensing by this organelle. Our model could be profitably applied to motile cilia and our results also demonstrate the possibility of using easily observable ciliary dynamics to probe interior cytoskeletal dynamics.
Publisher
Cold Spring Harbor Laboratory