Mechanical Properties of a Primary Cilium from the Stochastic Motions of the Cilium Tip

Author:

Flaherty J.,Feng Z.,Peng Z.,Young Y.-N.,Resnick A.ORCID

Abstract

ABSTRACTThe stochastic tip dynamics of a primary cilium held within an optical trap is quantified by combining experimental, analytical and computational tools. Primary cilia are cellular organelles, present on most vertebrate cells, hypothesized to function as a fluid flow sensor. The mechanical properties of a cilium remain incompletely characterized. We measured the fluctuating position of an optically trapped cilium tip under untreated, Taxol-treated, and HIF-stabilized conditions. We applied analytical modeling to derive the mean-squared displacement of the trapped tip of a cilium and compared the results with experimental measurements. We provide, for the first time, evidence that the effective flexural rigidity of a ciliary axoneme is length-dependent, and longer cilia are stiffer than shorter cilia. We then provide a rational explanation for both effects. We demonstrate that the apparent length-dependent flexural rigidity can be understood by a combination of modeling axonemal microtubules orthotropic elastic shells and including (actin-driven) active stochastic basal body motion. It is hoped that our improved characterization of cilia will result in deeper understanding of the biological function of cellular flow sensing by this organelle. Our model could be profitably applied to motile cilia and our results also demonstrate the possibility of using easily observable ciliary dynamics to probe interior cytoskeletal dynamics.

Publisher

Cold Spring Harbor Laboratory

Reference50 articles.

1. Primary cilia are specialized calcium signalling organelles

2. Cilioplasm is a cellular compartment for calcium signaling in response to mechanical and chemical stimuli;Cell. Mol. Life Sci. Cellular and Molecular Life Sciences,2013

3. Use of optical tweezers to probe epithelial mechanosensation;J. Biomed. Opt Journal of Biomedical Optics,2010

4. Bending the MDCK Cell Primary Cilium Increases Intracellular Calcium

5. Kidney-specific inactivation of the KIF3A subunit of kinesin-II inhibits renal ciliogenesis and produces polycystic kidney disease

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3