Hybrid assembly of the genome of the entomopathogenic nematode Steinernema carpocapsae identifies the X-chromosome

Author:

Serra Lorrayne,Macchietto Marissa,Macias-Muñoz Aide,McGill Cassandra Joan,Rodriguez Isaryhia Maya,Rodriguez Bryan,Murad Rabi,Mortazavi AliORCID

Abstract

AbstractEntomopathogenic nematodes from the genus Steinernema are lethal insect parasites that quickly kill their insect hosts with the help of their symbiotic bacteria. Steinernema carpocapsae is one of the most studied entomopathogens due to its broad lethality to diverse insect species and its effective commercial use as a biological control agent for insect pests, as well as a genetic model for studying parasitism, pathogenesis, and symbiosis. In this study, we used long-reads from the Pacific Biosciences platform and BioNano Genomics Irys system to assemble the best genome of S. carpocapsae ALL strain to date, comprising 84.5 Mb in 16 scaffolds, with an N50 of 7.36Mb. The largest scaffold, with 20.9Mb, was identified as chromosome X based on sex-specific genome sequencing. The high level of contiguity allowed us to characterize gene density, repeat content, and GC content. RNA-seq data from 17 developmental stages, spanning from embryo to adult, were used to predict 30,957 gene models. Using this new genome, we performed a macrosyntenic analysis to Caenorhabditis elegans and Pristionchus pacificus and found S. carpocapsae’s chromosome X to be primarily orthologous to C. elegans’ and P. pacificus’ chromosome II and IV. We also investigated the expansion of protein families and gene expression differences between male and female stage nematodes. This new genome and more accurate set of annotations provide a foundation for new comparative genomic and gene expression studies within the Steinernema clade and across the Nematoda phylum.Article SummaryThe insect killing worms Steinernema carpocapsae is a model organism for parasitism and symbiosis. The authors have used long reads and optical mapping to generate substantially contiguous assembly and a new set of gene annotations. They have identified the X chromosome as well as expansions in specific family proteases found in the venom of this worm. A macrosyntenic analysis with C. elegans shows a broad conservation of ancestral chromosomes with the exception of chromosome X. This new assembly will be useful to the Steinernema community and the broader nematode genomics community.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3