Critical and distinct roles for key RET tyrosine docking sites in renal development

Author:

Jain Sanjay,Encinas Mario,Johnson Eugene M.,Milbrandt Jeffrey

Abstract

Molecular mechanisms that lead to congenital anomalies of kidneys and the lower urinary tract (CAKUT) are poorly understood. To elucidate the molecular basis for signaling specificity of GDNF-mediated RET signaling in kidney development, we characterized mice that exclusively express either the human RET9 or RET51 isoform, or express these isoforms with individual mutations in docking tyrosines for PTB and SH2-domain-containing adaptors Src (Y981), PLCγ (Y1015), and Shc (Y1062). Our results provide evidence for differential and isoform-specific roles of these docking sites in murine kidney development. Homozygous RetRET9 and RetRET51 mice were viable and show normally developed kidneys, indicating redundant roles of human RET isoforms in murine kidney development. In the context of the RET51 isoform, only mutation of the docking Tyr 1015 (Y1015F) resulted in severe renal anomalies. These included bilateral megaureters and multicystic kidneys that were caused by supernumerary ureteric buds that fail to separate from the wolffian duct as well as decreased branching morphogenesis. Similar kidney and ureter defects were observed in RET9(Y1015F) mice that contain the Y1015F mutation in the RET9 isoform. Interestingly, loss of RET9(Y1062)-mediated AKT/MAPK activation resulted in renal agenesis or kidney rudiments, whereas mutation of this residue in RET51 had no obvious effect on AKT/MAPK activity and renal development. These results reveal novel roles of key RET-dependent signaling pathways in embryonic kidney development and provide murine models and new insights into the molecular basis for CAKUT.

Publisher

Cold Spring Harbor Laboratory

Subject

Developmental Biology,Genetics

Cited by 131 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3