Identification of a novel zinc finger protein binding a conserved element critical for Pit-1-dependent growth hormone gene expression.

Author:

Lipkin S M,Näär A M,Kalla K A,Sack R A,Rosenfeld M G

Abstract

The growth hormone (GH) and prolactin genes require the pituitary-specific POU domain transcription factor Pit-1 for their activation. However, additional factors are necessary for the effective expression of these genes. Analysis of evolutionarily conserved sequences in the proximal GH promoter suggests the critical importance of one highly conserved element located between the two Pit-1 response elements. Mutation of this site decreases expression of a transgene in mice > 100-fold. We have identified a major activity binding to this site as a novel member of the Cys/His zinc finger superfamily, referred to as Zn-15. The Zn-15 DNA-binding domain comprises three zinc fingers separated by unusually long linker sequences that would be expected to interrupt specific DNA site recognition. Zn-15 synergizes with Pit-1 to activate the GH promoter in heterologous cell lines in which this promoter is only minimally responsive to Pit-1 alone. Our data suggest that functional interactions between the tissue-specific POU domain factor Pit-1 and this novel zinc finger factor binding to an evolutionarily conserved region in the GH promoter may constitute an important component of the combinatorial code that underlies the effective expression of the GH gene.

Publisher

Cold Spring Harbor Laboratory

Subject

Developmental Biology,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3