Dominant negative alleles of RAD52 reveal a DNA repair/recombination complex including Rad51 and Rad52.

Author:

Milne G T,Weaver D T

Abstract

Saccharomyces cerevisiae rad52 mutants are characterized by severe defects in double-strand break (DSB) repair and recombination. In this study we have identified several regions of RAD52 that are required for these biological functions. We cloned and characterized a RAD52 homolog from Kluyveromyces lactis that partially complemented S. cerevisiae rad52 mutants while exhibiting negative dominance in wild-type (RAD52) strains. The dominant negative effect was suppressed by overexpression of RAD51, an additional gene known to be required for DSB repair and recombination, indicating a genetic interaction between these loci. Furthermore, GAL4 two-hybrid analysis revealed a physical interaction between Rad51 and the carboxy-terminal one-third of Rad52. Deletion alleles of rad52 (with or without the Rad51 association domain) also produced dominant negative defects, suggesting the disruption of repair through nonfunctional interactions with other DSB repair and recombination proteins. RAD51 relieved the negative dominance of each of these alleles either by competitive titration or functional activation of mutant or heterologous Rad52 proteins. These results demonstrate the importance of Rad52-Rad51 interactions and point to the formation of a higher order repair/recombination complex potentially containing other yet unidentified components.

Publisher

Cold Spring Harbor Laboratory

Subject

Developmental Biology,Genetics

Reference31 articles.

1. Semidominant suppressors of Srs2 helicase mutations of Saccharomyces cerevisiae map in the RAD51 gene, whose sequence predicts a protein with similarities to procaryotic RecA protein.;Mol. Cell. Biol.,1992

2. Primary structure of the RAD52 gene in Saccharomyces cerevisiae.;Mol. Cell. Biol.,1984

3. Identification of new genes required for meiotic recombination in Saccharomyces cerevisiae.;Genetics,1992

4. Mutagenic DNA repair in Escherichia coli, XX. Overproduction of UmuD' protein results in suppression of the umuC36 mutation in excision defective bacteria.;Mutat. Res.,1991

5. Dominant negative umuD mutations decreasing RecA-mediated cleavage suggest roles for intact UmuD in modulation of SOS mutagenesis.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3