Nijmegen Breakage Syndrome (NBS) is a Telomeropathy: Analysis of Telomere Length in NBS Homo- and Heterozygotes and Humanized Nbs Mice

Author:

Habib Raneem,Kim Ryong,Neitzel Heidemarie,Demuth IljaORCID,Chrzanowska Krystyna,Seemanova Eva,Faber Renaldo,Digweed Martin,Jäger Kathrin,Sperling KarlORCID,Walter MichaelORCID

Abstract

AbstractThe autosomal recessive genetic disorder Nijmegen breakage syndrome (NBS) is characterized by a defect in DNA double-strand break repair protein nibrin and chromosome instability associated with a high predisposition to cancer. Here we hypothesized that impaired nibrin/MRE11/RAD50 telomere maintenance complex may also affect telomere length and modulate the cancer phenotype.Telomere length was studied in blood from 38 homozygous and 27 heterozygous individuals, in one homozygous fetus, and in sex NBS lymphoblastoid cell lines (all with the founder mutation c.657_661del5), and in three humanized Nbs mice, using qPCR, TRF and Q-FISH.Telomere lengths were markedly but uniformly reduced to 20-40% of healthy controls. There was no correlation between telomere length and severity of clinical phenotype or age of death. By contrast, individual patients with very short telomeres displayed long survival times after cancer manifestation. Mildly accelerated telomere attrition was found in older NBS heterozygotes. In the NBS-fetus, the spinal cord, brain and heart had the longest telomeres, skin the shortest. Humanized Nbs mice (with much longer telo-meres than those in human beings) did not show accelerated telomere attrition.Our data clearly show that NBS is a secondary telomeropathy with unique features. Te- lomere attrition in NBS may cause genetic instability and contribute to the high cancer incidence in NBS. On the other hand, short telomeres may prevent an even worse pheno-type when a tumor has developed. These data may help to understand the high cancer rate in NBS and also the bifunctional role of telomere shortening in cancerogenesis.Author SummaryDNA damage is harmful because it leads to mutations in genes that initiate or accelerate cancerogenesis. The devastating consequences of DNA damage are manifested in diseases with non-functional repair pathways such as Nijmegen breakage syndrome (NBS). A common feature of these diseases is a high tumor incidence. However, cancer incidence varies and is not clear why it is highest for NBS. In a previous study, we have shown that the underlying nebrin mutation not only leads to defective DNA repair but also to higher degree of oxidative stress that generates further DNA lesions. Nibrin may play also an important role in protecting chromosome ends, the telomeres, from inap-propriate DNA repair. Therefore we examined the telomere length in NBS and show markedly reduced values in affected patients but not in NBC mice (with much milder phenotype and longer telomeres). Telomere attrition contributes to genetic instability and may thus contribute to the high cancer incidence in NBS. Individual patients with very short telomeres, however, displayed long survival times after cancer manifestation. Thus, short telomeres may also prevent an even worse phenotype when a tumor has developed. These data are fundamental to understanding the high cancer rate in NBS and also the bifunctional role of telomere shortening in cancer.

Publisher

Cold Spring Harbor Laboratory

Reference61 articles.

1. A NEW CHROMOSOMAL INSTABILITY DISORDER: THE NIJMEGEN BREAKAGE SYNDROME

2. Varon R , Demuth I , Chrzanowska KH. Nijmegen Breakage Syndrome. In: Adam MP , Ardinger HH , Pagon RA , Wallace SE , Bean LJH , Stephens K , et al., editors. GeneReviews((R)). Seattle (WA) 1993.

3. The clinical manifestation of a defective response to DNA double-strand breaks as exemplified by Nijmegen breakage syndrome

4. Nijmegen breakage syndrome (NBS)

5. The gene for the ataxia-telangiectasia variant, Nijmegen breakage syndrome, maps to a 1-cM interval on chromosome 8q21;Am J Hum Genet,1997

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3