Fast, sensitive, and accurate integration of single cell data with Harmony

Author:

Korsunsky IlyaORCID,Fan JeanORCID,Slowikowski KamilORCID,Zhang FanORCID,Wei KevinORCID,Baglaenko YuriyORCID,Brenner MichaelORCID,Loh Po-RuORCID,Raychaudhuri SoumyaORCID

Abstract

AbstractThe rapidly emerging diversity of single cell RNAseq datasets allows us to characterize the transcriptional behavior of cell types across a wide variety of biological and clinical conditions. With this comprehensive breadth comes a major analytical challenge. The same cell type across tissues, from different donors, or in different disease states, may appear to express different genes. A joint analysis of multiple datasets requires the integration of cells across diverse conditions. This is particularly challenging when datasets are assayed with different technologies in which real biological differences are interspersed with technical differences. We present Harmony, an algorithm that projects cells into a shared embedding in which cells group by cell type rather than dataset-specific conditions. Unlike available single-cell integration methods, Harmony can simultaneously account for multiple experimental and biological factors. We develop objective metrics to evaluate the quality of data integration. In four separate analyses, we demonstrate the superior performance of Harmony to four single-cell-specific integration algorithms. Moreover, we show that Harmony requires dramatically fewer computational resources. It is the only available algorithm that makes the integration of 106 cells feasible on a personal computer. We demonstrate that Harmony identifies both broad populations and fine-grained subpopulations of PBMCs from datasets with large experimental differences. In a meta-analysis of 14,746 cells from 5 studies of human pancreatic islet cells, Harmony accounts for variation among technologies and donors to successfully align several rare subpopulations. In the resulting integrated embedding, we identify a previously unidentified population of potentially dysfunctional alpha islet cells, enriched for genes active in the Endoplasmic Reticulum (ER) stress response. The abundance of these alpha cells correlates across donors with the proportion of dysfunctional beta cells also enriched in ER stress response genes. Harmony is a fast and flexible general purpose integration algorithm that enables the identification of shared fine-grained subpopulations across a variety of experimental and biological conditions.

Publisher

Cold Spring Harbor Laboratory

Reference38 articles.

1. Exponential scaling of single-cell RNA-seq in the past decade

2. Regev, A. et al. The human cell atlas. Elife 6 (2017).

3. Zhang, F. et al. Defining inflammatory cell states in rheumatoid arthritis joint synovial tissues by integrating single-cell transcriptomics and mass cytometry. bioRxiv (2018).

4. Arazi, A. et al. The immune cell landscape in kidneys of lupus nephritis patients (2018).

5. Hicks, S. C. , Townes, F. W. , Teng, M. & Irizarry, R. A. Missing data and technical variability in single-cell RNA-sequencing experiments. Biostatistics (2017).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3