Hippocampal theta bursting and waveform shape reflect CA1 spiking patterns

Author:

Cole ScottORCID,Voytek BradleyORCID

Abstract

AbstractBrain rhythms are nearly always analyzed in the spectral domain in terms of their power, phase, and frequency. While this conventional approach has uncovered spike-field coupling, as well as correlations to normal behaviors and pathological states, emerging work has highlighted the physiological and behavioral importance of multiple novel oscillation features. Oscillatory bursts, for example, uniquely index a variety of cognitive states, and the nonsinusoidal shape of oscillations relate to physiological changes, including Parkinson’s disease. Open questions remain regarding how bursts and nonsinusoidal features relate to circuit-level processes, and how they interrelate. By analyzing unit and local field recordings in the rodent hippocampus, we uncover a number of significant relationships between oscillatory bursts, nonsinusoidal waveforms, and local inhibitory and excitatory spiking patterns. Bursts of theta oscillations are surprisingly related to a decrease in pyramidal neuron synchrony, and have no detectable effect on firing sequences, despite significant increases in neuronal firing rates during periods of theta bursting. Theta burst duration is predicted by the asymmetries of its first cycle, and cycle asymmetries relate to firing rate, synchrony, and sequences of pyramidal neurons and interneurons. These results provide compelling physiological evidence that time-domain features, of both nonsinusoidal hippocampal theta waveform and the theta bursting state, reflects local circuit properties. These results point to the possibility of inferring circuit states from local field potential features in the hippocampus and perhaps other brain regions with other rhythms.

Publisher

Cold Spring Harbor Laboratory

Reference80 articles.

1. Spatially Distributed Local Fields in the Hippocampus Encode Rat Position

2. Hippocampal Theta-Gamma Coupling Reflects State-Dependent Information Processing in Decision Making;Cell Rep,2018

3. Electrophysiological correlates of sleep delta waves

4. Cross-Frequency Phase-Phase Coupling between Theta and Gamma Oscillations in the Hippocampus

5. Benjamini, Y.H. , and Hochberg, Y. (1995). Controlling The False Discovery Rate - A Practical And Powerful Approach To Multiple Testing. Journal of the Royal Statistical Society. Series B: Methodological.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3