Human back-tracking behaviour is associated with suppression of default-mode region activity and enhanced dorsal anterior cingulate activity

Author:

Javadi Amir-Homayoun,Patai Eva Zita,Marin-Garcia Eugenia,Margois Aaron,Tan Heng-Ru M.,Kumaran Dharshan,Nardini Marko,Penny Will,Duzel Emrah,Dayan Peter,Spiers Hugo J.

Abstract

AbstractCentral to the concept of the ‘cognitive map’ is that it confers behavioural flexibility, allowing animals to take efficient detours, exploit shortcuts and realise the need to back-track rather than persevere on a poorly chosen route. The neural underpinnings of such naturalistic and flexible behaviour remain unclear. During fMRI we tested human subjects on their ability to navigate to a set of goal locations in a virtual desert island riven by lava, which occasionally shifted to block selected paths (necessitating detours) or receded to open new paths (affording shortcuts). We found that during self-initiated back-tracking, activity increased in frontal regions and the dorsal anterior cingulate cortex, while activity in regions associated with the core default-mode network was suppressed. Detours activated a network of frontal regions compared to shortcuts. Activity in right dorsolateral prefrontal cortex specifically increased when participants encountered new plausible shortcuts but which in fact added to the path (false shortcuts). These results help inform current models as to how the brain supports navigation and planning in dynamic environments.Significance StatementAdaptation to change is important for survival. Although real-world spatial environments are prone to continual change, little is known about how the brain supports navigation in dynamic environments where flexible adjustments to route plans are needed. Here, we used fMRI to examine the brain activity elicited when humans took forced detours, identified shortcuts and spontaneously back-tracked along their recent path. Both externally and internally generated changes in the route activated the fronto-parietal attention network, whereas only internally generated changes generated increased activity in the dorsal anterior cingulate cortex with a concomitant disengagement in regions associated with the default-mode network. The results provide new insights into how the brain plans and re-plans in the face of a changing environment.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3