Targeting Viperin to the Mitochondrion Inhibits the Thiolase Activity of the Trifunctional Enzyme Complex

Author:

Dumbrepatil Arti B.,Zegalia Kelcie A.,Sajja Keerthi,Kennedy Robert T.,Marsh E. Neil. G.ORCID

Abstract

AbstractUnderstanding the mechanisms by which viruses evade host cell immune defenses is important for developing improved antiviral therapies. In an unusual twist, human cytomegalovirus (HCMV) co-opts the antiviral radical SAM enzyme, viperin (Virusinhibitoryprotein,endoplasmicreticulum-associated,interferon-inducible), to enhance viral infectivity. This process involves translocation of viperin to the mitochondrion where it binds the β-subunit (HADHB) of the mitochondrial trifunctional enzyme complex that catalyzes the thiolysis of β-ketoacyl-CoA esters as part of fatty acid β-oxidation. We have investigated how the interaction between these two enzymes alters their activities and their effect on cellular ATP levels. Studies with purified enzymes demonstrated that viperin inhibits the thiolase activity of HADHB, but, unexpectedly, HADHB activates viperin to synthesize the antiviral nucleotide 3’-deoxy-3’,4’-didehydro-CTP. Enzyme activities were also measured in lysates prepared from transfected HEK 293T cells transiently expressing these enzymes. Mirroring the studies on purified enzymes, localizing viperin to the mitochondria decreased thiolase activity whereas co-expression of HADHB significantly increased viperin activity. Furthermore, targeting viperin to mitochondria also increased the rate at which HADHB was retro-translocated out of mitochondria and degraded, providing an additional mechanism for reducing HADHB activity. Targeting viperin to the mitochondria decreased cellular ATP levels by over 50 %, consistent with the enzyme disrupting fatty acid catabolism. These results provide biochemical insight into the mechanism by which HCMV subjugates viperin; they also provide a biochemical rational for viperin’s recently discovered role in regulating thermogenesis in adipose tissues.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3