Human Dental Pulp Stem Cells Grown in Neurogenic Media Differentiate into Endothelial Cells and Promote Neovasculogenesis in the Mouse Brain

Author:

Luzuriaga J.,Pastor-Alonso O.,Encinas J.M.,Unda F.,Ibarretxe G.,Pineda JR.ORCID

Abstract

SUMMARYDental Pulp Stem Cells (DPSCs) have a demonstrated capacity to acquire neuronal-like phenotypes, suggesting their use in brain cell therapies. In the present work, we wanted to address the phenotypic fate of adult DPSCs cultured in Neurocult media (Stem Cell Technologies), a cell culture medium without serum routinely used for the expansion of adult neural stem cells (NSCs). Our results showed for the first time, that non-genetically modified adult DPSCs cultured with Neurocult generated neurosphere-like dentospheres expressing the NSC markers Nestin and GFAP, but also the vascular endothelial cell marker CD31. One month post-intracranial graft into athymic nude mice, human CD31+ or Nestin+ DPSC-derived cells were found tightly associated with brain blood vessels increasing their laminin staining. These results suggest that DPSCs integrated and contributed to an increased generation of neovasculature within brain tissue and that Neurocult medium constituted a fast and efficient way to obtain endothelial cells from human DPSCs.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3