Unsupervised contrastive peak caller for ATAC-seq

Author:

Vu Ha T.H.ORCID,Zhang YudiORCID,Tuteja GeetuORCID,Dorman Karin S.ORCID

Abstract

The assay for transposase-accessible chromatin with sequencing (ATAC-seq) is a common assay to identify chromatin accessible regions by using a Tn5 transposase that can access, cut, and ligate adapters to DNA fragments for subsequent amplification and sequencing. These sequenced regions are quantified and tested for enrichment in a process referred to as “peak calling.” Most unsupervised peak calling methods are based on simple statistical models and suffer from elevated false positive rates. Newly developed supervised deep learning methods can be successful, but they rely on high quality labeled data for training, which can be difficult to obtain. Moreover, though biological replicates are recognized to be important, there are no established approaches for using replicates in the deep learning tools, and the approaches available for traditional methods either cannot be applied to ATAC-seq, where control samples may be unavailable, or are post hoc and do not capitalize on potentially complex, but reproducible signal in the read enrichment data. Here, we propose a novel peak caller that uses unsupervised contrastive learning to extract shared signals from multiple replicates. Raw coverage data are encoded to obtain low-dimensional embeddings and optimized to minimize a contrastive loss over biological replicates. These embeddings are passed to another contrastive loss for learning and predicting peaks and decoded to denoised data under an autoencoder loss. We compared our replicative contrastive learner (RCL) method with other existing methods on ATAC-seq data, using annotations from ChromHMM genomic labels and transcription factor ChIP-seq as noisy truth. RCL consistently achieved the best performance.

Funder

Eunice Kennedy Shriver National Institute of Child Health & Human Development

National Institutes of Health

United States Department of Agriculture

National Institute of Food and Agriculture

Publisher

Cold Spring Harbor Laboratory

Subject

Genetics (clinical),Genetics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3