Author:
Camus Stéphane M.,Camus Marine D.,Figueras-Novoa Carmen,Boncompain Gaelle,Amanda Sadacca L.,Esk Christopher,Bigot Anne,Gould Gwyn W.,Kioumourtzoglou Dimitrios,Perez Franck,Bryant Nia J.,Mukherjee Shaeri,Brodsky Frances M.
Abstract
AbstractGlucose Transporter 4 (GLUT4) is sequestered inside muscle and fat, then released by vesicle traffic to the cell surface in response to post-prandial insulin for blood glucose clearance. Here we map the biogenesis of this GLUT4 traffic pathway in humans, which involves clathrin isoform CHC22. We observe that GLUT4 transits through the early secretory pathway more slowly than the constitutively-secreted GLUT1 transporter and localize CHC22 to the endoplasmic-reticulum-to-Golgi-intermediate compartment (ERGIC). CHC22 functions in transport from the ERGIC, as demonstrated by an essential role in forming the replication vacuole of Legionella pneumophila bacteria, which requires ERGIC-derived membrane. CHC22 complexes with ERGIC tether p115, GLUT4 and sortilin and down-regulation of either p115 or CHC22, but not GM130 or sortilin abrogate insulin-responsive GLUT4 release. This indicates CHC22 traffic initiates human GLUT4 sequestration from the ERGIC, and defines a role for CHC22 in addition to retrograde sorting of GLUT4 after endocytic recapture, enhancing pathways for GLUT4 sequestration in humans relative to mice, which lack CHC22.SummaryBlood glucose clearance relies on insulin-mediated exocytosis of glucose transporter 4 (GLUT4) from sites of intracellular sequestration. We show that in humans, CHC22 clathrin mediates membrane traffic from the ER-to-Golgi Intermediate Compartment, which is needed for GLUT4 sequestration during GLUT4 pathway biogenesis.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献