The impact of reporter kinetics on the interpretation of data gathered with fluorescent reporters

Author:

Sabatini Bernardo L.

Abstract

AbstractFluorescent reporters of biological functions are used to monitor biochemical events and signals in cells and tissue. For neurobiology, these have been particularly useful for monitoring signals in the brains of behaving animals. In order to enhance signal-to-noise, fluorescent reporters typically have kinetics that are slower than that of the underlying biological process. This low-pass filtering by the reporter renders the fluorescence transient a leaking integrated version of the biological signal. Here I discuss the effects that low-pass filtering, or more precisely of integrating by convolving with an exponentially decaying kernel, has on the interpretation of the relationship between the reporter fluorescence transient and the events that underlie it. Unfortunately, when the biological events being monitored are impulse-like, such as the firing of an action potential or the release of neurotransmitter, filtering greatly reduces the maximum correlation coefficient that can be found between the events and the fluorescence signal. This can erroneously support the conclusion that the fluorescence transient and the biological signal that it reports are only weakly related. Furthermore, when examining the encoding of behavioral state variables by nervous system, filtering by the reporter kinetics will favor the interpretation that fluorescence transients encode integrals of measured variables as opposed to the variables themselves. For these reasons, it is necessary to take into account the filtering effects of the indicator by deconvolving with the convolution kernel and recovering the underlying biological events before making conclusions about what is encoded in the signals emitted by fluorescent reporters.

Publisher

Cold Spring Harbor Laboratory

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3