Initial Characterization of the Two ClpP Paralogs ofChlamydia trachomatisSuggests Unique Functionality for Each

Author:

Wood Nicholas A.,Chung Krystal,Blocker Amanda,de Almeida Nathalia Rodrigues,Conda-Sheridan Martin,Fisher Derek J.ORCID,Ouellette Scot P.

Abstract

AbstractChlamydiais an obligate intracellular bacterium that differentiates between two distinct functional and morphological forms during its developmental cycle: elementary bodies (EBs) and reticulate bodies (RBs). EBs are non-dividing, small electron dense forms that infect host cells. RBs are larger, non-infectious replicative forms that develop within a membrane-bound vesicle, termed an inclusion. Given the unique properties of each developmental form of this bacterium, we hypothesized that the Clp protease system plays an integral role in proteomic turnover by degrading specific proteins from one developmental form or the other.Chlamydiahas five uncharacterizedclpgenes:clpX,clpC, twoclpPparalogs, andclpB. In other bacteria, ClpC and ClpX are ATPases that unfold and feed proteins into the ClpP protease to be degraded, and ClpB is a deaggregase. Here, we focused on characterizing the ClpP paralogs. Transcriptional analyses and immunoblotting determined these genes are expressed mid-cycle. Bioinformatic analyses of these proteins identified key residues important for activity. Over-expression of inactiveclpPmutants inChlamydiasuggested independent function of each ClpP paralog. To further probe these differences, we determined interactions between the ClpP proteins using bacterial two-hybrid assays and native gel analysis of recombinant proteins. Homotypic interactions of the ClpP proteins, but not heterotypic interactions between the ClpP paralogs, were detected. Interestingly, ClpP2, but not ClpP1, protease activity was detectedin vitro. This activity was stimulated by antibiotics known to activate ClpP, which also blocked chlamydial growth. Our data suggest the chlamydial ClpP paralogs likely serve distinct and critical roles in this important pathogen.ImportanceChlamydia trachomatisis the leading cause of preventable infectious blindness and of bacterial sexually transmitted infections worldwide. Chlamydiae are developmentally regulated, obligate intracellular pathogens that alternate between two functional and morphologic forms with distinct repertoires of proteins. We hypothesize that protein degradation is a critical aspect to the developmental cycle. A key system involved in protein turnover in bacteria is the Clp protease system. Here, we characterized the two chlamydial ClpP paralogs by examining their expression inChlamydia, their ability to oligomerize, and their proteolytic activity. This work will help understand the evolutionarily diverse Clp proteases in the context of intracellular organisms, which may aid in the study of other clinically relevant intracellular bacteria.

Publisher

Cold Spring Harbor Laboratory

Reference76 articles.

1. WHO. 2017. Trachoma. http://www.who.int/mediacentre/factsheets/fs382/en/. Accessed

2. Development status and future prospects for a vaccine against Chlamydia trachomatis infection;Vaccine,2014

3. CDC. 2017. 2017 Sexually Transmitted Diseases Surveillance. https://www.cdc.gov/std/stats16/chlamydia.htm#foot-1. Accessed

4. The chlamydial developmental cycle;FEMS Microbiology Reviews,2006

5. Chlamydia trachomatis developmentally regulated protein is homologous to eukaryotic histone H1.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3