Statistical inference for the evolutionary history of cancer genomes

Author:

Dinh K. N.,Jaksik R.,Kimmel M.,Lambert A.,Tavaré S.

Abstract

AbstractRecent years have produced a large amount of work on inference about cancer evolution from mutations identified in cancer samples. Much of the modeling work has been based on classical models of population genetics, generalized to accommodate time-varying cell population size. Reverse-time genealogical views of such models, commonly known as coalescents, have been used to infer aspects of the past of growing populations. Another approach is to use branching processes, the simplest scenario being the linear birth-death process (lbdp), a binary fission Markov age-dependent branching process. A genealogical view of such models is also available. The two approaches lead to similar but not identical results. Inference from evolutionary models of DNA often exploits summary statistics of the sequence data, a common one being the so-called Site Frequency Spectrum (SFS). In a sequencing experiment with a known number of sequences, we can estimate for each site at which a novel somatic mutation has arisen, the number of cells that carry that mutation. These numbers are then grouped into sites which have the same number of copies of the mutant. SFS can be computed from the statistics of mutations in a sample of cells, in which DNA has been sequenced. In this paper, examine how the SFS based on birth-death processes differ from those based on the coalescent model. This may stem from the different sampling mechanisms in the two approaches. However, we also show mathematically and computationally that despite this, they can be made quantitatively comparable at least for the range of parameters typical for tumor cell populations. We also present a model of tumor evolution with selective sweeps, based on coalescence, and demonstrate how it may help in understanding the past history of tumor as well the influence of data pre-processing. We illustrate the theory with applications to several examples of The Cancer Genome Atlas tumors.

Publisher

Cold Spring Harbor Laboratory

Reference43 articles.

1. M. Abramowitz and I. A. Stegun , Handbook of Mathematical Functions, Applied Mathematics Series, Number 55, National Bureau of Standards, 1964.

2. Accurate whole human genome sequencing using reversible terminator chemistry

3. Mutation frequencies in a birth-death branching process;The Annals of Applied Probability,2018

4. Does the cell number 109still really fit one gram of tumor tissue?

5. Population genetics of neutral mutations in exponentially growing cancer cell populations;Annals of Applied Probability,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3