Genomic and gene-expression comparisons among phage-resistant type-IV pilus mutants ofPseudomonas syringaepathovarphaseolicola

Author:

Sistrom Mark,Park Derek,O’Brien Heath E.,Wang Zheng,Guttman David S.,Townsend Jeffrey P.,Turner Paul E.

Abstract

AbstractPseudomonas syringaepv.phaseolicola(Pph) is a significant bacterial pathogen of agricultural crops, and phage ϕ6 and other members of the dsRNA virus familyCystoviridaeundergo lytic (virulent) infection of Pph, using the type IV pilus as the initial site of cellular attachment. Despite the popularity of Pph/phage ϕ6 as a model system in evolutionary biology, Pph resistance to phage ϕ6 remains poorly characterized. To investigate differences between phage ϕ6 resistant Pph strains, we examined genomic and gene expression variation among three bacterial genotypes that differ in the number of type IV pili expressed per cell: ordinary (wild-type), non-piliated, and super-piliated. Genome sequencing of non-piliated and super-piliated Pph identified few mutations that separate these genotypes from wild type Pph – and none present in genes known to be directly involved in type IV pilus expression. Expression analysis revealed that 81.1% of GO terms up-regulated in the non-piliated strain were down-regulated in the super-piliated strain. This differential expression is particularly prevalent in genes associated with respiration — specifically genes in the tricarboxylic acid cycle (TCA) cycle, aerobic respiration, and acetyl-CoA metabolism. The expression patterns of the TCA pathway appear to be generally up and down-regulated, in non-piliated and super-piliated Pph respectively. As pilus retraction is mediated by an ATP motor, loss of retraction ability might lead to a lower energy draw on the bacterial cell, leading to a different energy balance than wild type. The lower metabolic rate of the super-piliated strain is potentially a result of its loss of ability to retract.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3