Aggregation recovers developmental plasticity in mouse polyploid embryos

Author:

Imai Hiroyuki,Fujii Wataru,Kusakabe Ken Takeshi,Kiso Yasuo,Kano KiyoshiORCID

Abstract

ABSTRACTPolyploidy is comparatively prevalent in amphibians and fishes, but is infrequent in animals because of lethality after implantation. On the contrary, tetraploid embryos normally develop into blastocysts, and embryonic stem cells can be established from tetraploid blastocysts in mice. Thus, polyploidization does not seem to be so harmful during preimplantation development. However, the mechanisms by which early mammalian development accepts polyploidization are still poorly understood. In this study, we aimed to elucidate the effect of polyploidization on early mammalian development and to further comprehend its tolerability using hyperpolyploid embryos produced by artificial, repetitive whole genome duplication. Therefore, we successfully established several types of polyploid embryos (tetraploid, octaploid, and hexadecaploid), produced using repeated electrofusion of two-cell embryos in mice, and studied their developmental potential in vitro. We demonstrated that all types of these polyploid embryos maintained the ability to develop to the blastocyst stage, which implies that mammalian cells might have basic cellular functions in implanted embryos, despite polyploidization. However, the inner cell mass was absent in the hexadecaploid blastocysts. To complement the total cells in blastocysts, a fused hexadecaploid embryo was produced by aggregating a number of hexadecaploid embryos. The results indicated that the fused hexadecaploid embryo finally recovered pluripotent cells in blastocysts. Thus, our findings suggested that early mammalian embryos may have the tolerability and higher plasticity to adapt to hyperpolyploidization for blastocyst formation, despite intense alteration of the genome volume.

Publisher

Cold Spring Harbor Laboratory

Reference37 articles.

1. Biological implications of electric field effects: Part V. Fusion of blastomeres and blastocysts of mouse embryos;Bioelectrochem Bioenerg,1982

2. Brodsky, V. Y. and Uryvaeva, I. V. (1985). Genome multiplication in growth and development: biology of polyploid and polytene cells. London: Cambridge University Press.

3. Embryo Aggregation in Pig Improves Cloning Efficiency and Embryo Quality;PLoS One,2016

4. Ploidy effects on genes regulating growth mechanisms during fasting and refeeding in juvenile rainbow trout (Oncorhynchus mykiss);Mol Cell Endocrinol,2014

5. Stochastic patterning in the mouse pre-implantation embryo

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3