Neural substrates of navigational decision-making in Drosophila larva anemotaxis

Author:

Jovanic TihanaORCID,Truman James W.,Gershow MarcORCID,Zlatic MartaORCID

Abstract

AbstractSmall animals use sensory information to navigate their environment in order to reach more favorable conditions. in gradients of light, temperature, odors and CO2, Drosophila larvae alternate periods of runs and turns, regulating the frequency size and direction of turns, to move in a favorable direction. Whether larvae use the same strategies when navigating in response to somatosensory input is unknown. Further, while many of the sensory neurons that mediate navigation behaviors have been described, where and how these navigational strategies are implemented in the central nervous system and controlled by neuronal circuit elements is not well known. Here we characterize for the first time the navigational strategies of Drosophila larvae in gradients of air-current speeds using high-throughput behavioral assays and quantitative behavioral analysis. We find that larvae extend runs towards favorable directions and shorten runs in unfavorable directions, and that larvae regulate both the direction and amplitudes of turns. These results suggest similar central decision-making mechanisms underlie navigation behaviors in somatosensory and other sensory modalities. By silencing the activity of individual neurons and very sparse expression patterns (2 or 3 neuron types), we further identify the sensory neurons and circuit elements in the ventral nerve cord and brain of the larva required for navigational decisions during anemotaxis. The phenotypes of these central neurons are consistent with a mechanism where the increase of the turning rate in unfavorable conditions and decrease in turning rate in favorable conditions are independently controlled. In addition, we find phenotypes that suggest that the decisions of whether and which way to turn are controlled independently. Our study reveals that different neuronal modules in the nerve cord and brain mediate different aspects of navigational decision making. The neurons identified in our screen provide a basis for future detailed mechanistic understanding of the circuit principles of navigational decisionmaking.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3