Abstract
Human memory stores vast amounts of information. Yet recalling this information is often challenging when specific cues are lacking. Here we consider an associative model of retrieval where each recalled item triggers the recall of the next item based on the similarity between their long-term neuronal representations. The model predicts that different items stored in memory have different probability to be recalled depending on the size of their representation. Moreover, items with high recall probability tend to be recalled earlier and suppress other items. We performed an analysis of a large data set on free recall and found a highly specific pattern of statistical dependencies predicted by the model, in particular negative correlations between the number of words recalled and their average recall probability. Taken together, experimental and modeling results presented here reveal complex interactions between memory items during recall that severely constrain recall capacity.
Funder
NIH
EU FP7
Israeli Science Foundation
Foundation Adelis
Human Frontier Science Program
Publisher
Cold Spring Harbor Laboratory
Subject
Cellular and Molecular Neuroscience,Cognitive Neuroscience,Neuropsychology and Physiological Psychology
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献