Combining Digital Imaging and Genome Wide Association Mapping to Dissect Uncharacterized Traits in Plant/Pathogen Interactions
Author:
Fordyce Rachel F.,Soltis Nicole E.,Caseys Celine,Gwinner Raoni,Corwin Jason A.,Atwell Susana,Copeland Daniel,Feusier Julie,Subedy Anushriya,Eshbaugh Robert,Kliebenstein Daniel J.
Abstract
AbstractPlant resistance to generalist pathogens with broad host ranges, such as Botrytis cinerea, is typically quantitative and highly polygenic. Recent studies have begun to elucidate the molecular genetic basis underpinning plant-pathogen interactions using commonly measured traits including lesion size and/or pathogen biomass. Yet with the advent of digital imaging and phenomics, there are a large number of additional resistance traits available to study quantitative resistance. In this study, we used high-throughput digital imaging analysis to investigate previously uncharacterized visual traits of plant-pathogen interactions related disease resistance using the Arabidopsis thaliana/Botrytis cinerea pathosystem. Using a large collection of 75 visual traits collected from every lesion, we focused on lesion color, lesion shape, and lesion size, to test how these aspects of the interaction are genetically related. Using genome wide association (GWA) mapping in A. thaliana, we show that lesion color and shape are genetically separable traits associated with plant-disease resistance. Using defined mutants in 23 candidate genes from the GWA mapping, we could identify and show that novel loci associated with each different plant-pathogen interaction trait, which expands our understanding of the functional mechanisms driving plant disease resistance.SummaryDigital imaging allows the identification of genes controlling novel lesion traits.
Publisher
Cold Spring Harbor Laboratory
Reference77 articles.
1. Agrios, G. (2005). Plant Pathology. (Elsevier Academic Press). 2. Genes under positive selection in a model plant pathogenic fungus, Botrytis;Infection Genetics and Evolution,2012 3. Genetic diversity in Botrytis cinerea populations on vegetable crops in greenhouses in south-eastern Spain;Plant Pathology,2000 4. 1,135 Genomes Reveal the Global Pattern of Polymorphism in Arabidopsis thaliana 5. Amselem, J. , Cuomo, C.A. , van Kan, J.A.L. , Viaud, M. , Benito, E.P. , Couloux, A. , Coutinho, P.M. , de Vries, R.P. , Dyer, P.S. , Fillinger, S. , Fournier, E. , Gout, L. , Hahn, M. , Kohn, L.M. , Lapalu, N. , Plummer, K.M. , Pradier, J.M. , Quevillon, E. , Sharon, A. , Simon, A. , ten Have, A. , Tudzynski, B. , Tudzynski, P. , Wincker, P. , Andrew, M. , Anthouard, V. , Beever, R.E. , Beffa, R. , Benoit, I. , Bouzid, O. , Brault, B. , Chen, Z.H. , Choquer, M. , Collemare, J. , Cotton, P. , Danchin, E.G. , Da Silva, C. , Gautier, A. , Giraud, C. , Giraud, T. , Gonzalez, C. , Grossetete, S. , Guldener, U. , Henrissat, B. , Howlett, B.J. , Kodira, C. , Kretschmer, M. , Lappartient, A. , Leroch, M. , Levis, C. , Mauceli, E. , Neuveglise, C. , Oeser, B. , Pearson, M. , Poulain, J. , Poussereau, N. , Quesneville, H. , Rascle, C. , Schumacher, J. , Segurens, B. , Sexton, A. , Silva, E. , Sirven, C. , Soanes, D.M. , Talbot, N.J. , Templeton, M. , Yandava, C. , Yarden, O. , Zeng, Q.D. , Rollins, J.A. , Lebrun, M.H. , and Dickman, M. (2011). Genomic Analysis of the Necrotrophic Fungal Pathogens Sclerotinia sclerotiorum and Botrytis cinerea. Plos Genetics 7.
|
|