A kinetically-driven free exchange mechanism of EmrE antiport sacrifices coupling efficiency in favor of promiscuity

Author:

Robinson Anne E.,Thomas Nathan E.,Morrison Emma A.,Balthazor Bryan,Henzler-Wildman Katherine A.ORCID

Abstract

ABSTRACTEmrE is a small multidrug resistance transporter found in E. coli that confers resistance to toxic polyaromatic cations due to its proton-coupled antiport of these substrates. Here we show that EmrE breaks the rules generally deemed essential for coupled antiport. NMR spectra reveal that EmrE can simultaneously bind and cotransport proton and drug. The functional consequence of this finding is an exceptionally promiscuous transporter: Not only can EmrE export diverse drug substrates, it can couple antiport of a drug to either one or two protons, performing both electrogenic and electroneutral transport of a single substrate. We present a new kinetically-driven free exchange model for EmrE antiport that is consistent with these results and recapitulates ΔpH-driven concentrative drug uptake. Our results suggest that EmrE sacrifices coupling efficiency for initial transport speed and multidrug specificity.SIGNIFICANCEEmrE facilitates E. coli multidrug resistance by coupling drug efflux to proton import. This antiport mechanism has been thought to occur via a pure exchange model which achieves coupled antiport by restricting when the single binding pocket can alternate access between opposite sides of the membrane. We test this model using NMR titrations and transport assays and find it cannot account for EmrE antiport activity. We propose a new kinetically-driven free exchange model of antiport with fewer restrictions that better accounts for the highly promiscuous nature of EmrE drug efflux. This model expands our understanding of coupled antiport and has implications for transporter design and drug development.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3