A maladaptive combination of traits contributes to the maintenance of a stable hybrid zone between two divergent species of Drosophila

Author:

Cooper Brandon S.,Sedghifar Alisa,Nash W. Thurston,Comeault Aaron A.,Matute Daniel R.

Abstract

ABSTRACTGeographical areas where two species come into contact and hybridize serve as natural laboratories for assessing mechanisms that limit gene flow between species. The ranges of about half of all closely related Drosophila species overlap, and the genomes of several pairs reveal signatures of past introgression. However, only two contemporary hybrid zones have been characterized in the genus, and both are recently diverged sister species (D. simulans-D. sechellia, Ks = 0.05; D. yakuba-D. santomea, Ks = 0.048). Here we present evidence of a new hybrid zone, and the ecological mechanisms that maintain it, between two highly divergent Drosophila species (Ks = 0.11). On the island of Bioko in west Africa, D. teissieri occupies mostly forests, D. yakuba occupies mostly open agricultural areas, and recently, we discovered that hybrids between these species occur near the interface of these habitats. Genome sequencing revealed that all field-sampled hybrids are F1 progeny of D. yakuba females and D. teissieri males. We found no evidence for either advanced-generation hybrids or F1 hybrids produced by D. teissieri females and D.yakuba males. The lack of advanced-generation hybrids on Bioko is consistent with mark-recapture and laboratory experiments that we conducted, which indicate hybrids have a maladaptive combination of traits. Like D. yakuba, hybrids behaviorally prefer open habitat that is relatively warm and dry, but like D. teissieri, hybrids have low desiccation tolerance, which we predict leaves them physiologically ill-equipped to cope with their preferred habitat. These observations are consistent with recent findings of limited introgression in the D. yakuba clade and identify an ecological mechanism for limiting gene flow between D. yakuba and D. teissieri; namely, selection against hybrids that we have documented, in combination with hybrid male sterility, contributes to the maintenance of this narrow (~30m), stable hybrid zone centered on the forest-open habitat ecotone. Our results show how a deleterious combination of parental traits can result in unfit or maladapted hybrids.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3