Identification of a genetic element required for spore killing in Neurospora

Author:

Rhoades Nicholas A.,Harvey Austin M.,Samarajeewa Dilini A.,Svedberg Jesper,Yusifov Aykhan,Abusharekh Anna,Manitchotpisit Pennapa,Brown Daren W.,Sharp Kevin J.,Rehard David G.,Peters Joshua,Ostolaza-Maldonado Xavier,Stephenson Jackson,Shiu Patrick K. T.,Johannesson Hanna,Hammond Thomas M.

Abstract

ABSTRACTMeiotic drive elements like Spore killer-2 (Sk-2) in Neurospora are transmitted through sexual reproduction to the next generation in a biased manner. Sk-2 achieves this biased transmission through spore killing. Here, we identify rfk-1 as a gene required for the spore killing mechanism. The rfk-1 gene is associated with a 1,481 bp DNA interval (called AH36) near the right border of the 30 cM Sk-2 element, and its deletion eliminates the ability of Sk-2 to kill spores. The rfk-1 gene also appears to be sufficient for spore killing because its insertion into a non-Sk-2 isolate disrupts sexual reproduction after the initiation of meiosis. Although the complete rfk-1 transcript has yet to be defined, our data indicate that rfk-1 encodes a protein of at least 39 amino acids and that rfk-1 has evolved from a partial duplication of gene ncu07086. We also present evidence that rfk-1’s location near the right border of Sk-2 is critical for the success of spore killing. Increasing the distance of rfk-1 from the right border of Sk-2 causes it to be inactivated by a genome defense process called meiotic silencing by unpaired DNA (MSUD), adding to accumulating evidence that MSUD exists, at least in part, to protect genomes from meiotic drive.

Publisher

Cold Spring Harbor Laboratory

Reference48 articles.

1. Neurospora crassa, a Model System for Epigenetics Research

2. Genetic Villains: Killer Meiotic Drivers

3. Burt, A. , and R. Trivers , 2008 Genes in Conflict: The Biology of Selfish Genetic Elements. Belknap Press of Harvard University Press.

4. Recombination block in the Spore killer region of Neurospora;Genome Natl. Res. Counc. Can,1987

5. BLAST+: architecture and applications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3