A molecular model of the mitochondrial genome segregation machinery in Trypanosoma brucei

Author:

Hoffmann Anneliese,Käser Sandro,Jakob Martin,Amodeo Simona,Peitsch Camille,Týč Jiří,Vaughan Sue,Zuber Benoît,Schneider André,Ochsenreiter Torsten

Abstract

AbstractIn almost all eukaryotes mitochondria maintain their own genome. Despite the discovery more than 50 years ago still very little is known about how the genome is properly segregated during cell division. The protozoan parasite Trypanosoma brucei contains a single mitochondrion with a singular genome the kinetoplast DNA (kDNA). Electron microscopy studies revealed the tripartite attachment complex (TAC) to physically connect the kDNA to the basal body of the flagellum and to ensure proper segregation of the mitochondrial genome via the basal bodies movement, during cell cycle. Using super-resolution microscopy we precisely localize each of the currently known unique TAC components. We demonstrate that the TAC is assembled in a hierarchical order from the base of the flagellum towards the mitochondrial genome and that the assembly is not dependent on the kDNA itself. Based on biochemical analysis the TAC consists of several non-overlapping subcomplexes suggesting an overall size of the TAC exceeding 2.8 mDa. We furthermore demonstrate that the TAC has an impact on mitochondrial organelle positioning however is not required for proper organelle biogenesis or segregation.Significance StatementMitochondrial genome replication and segregation are essential processes in most eukaryotic cells. While replication has been studied in some detail much less is known about the molecular machinery required distribute the replicated genomes. Using super-resolution microscopy in combination with molecular biology and biochemistry we show for the first time in which order the segregation machinery is assembled and that it is assembled de novo rather than in a semi conservative fashion in the single celled parasite Trypanosoma brucei. Furthermore, we demonstrate that the mitochondrial genome itself is not required for assembly to occur. It seems that the physical connection of the mitochondrial genome to cytoskeletal elements is a conserved feature in most eukaryotes, however the molecular components are highly diverse.Abbreviation(EZF)Exclusion zone filaments(ULF)Unilateral filament(TAC)tripartite attachment complex(OM)outer mitochondrial(IM)inner mitochondrial(BSF)bloodstream form(PCF)procyclic form(kDNA)kinetoplast DNA(gRNA)guide RNA(SBFSEM)Serial block face-scanning electron microscopy(Tet)tetracyclin(STED)Stimulated Emission Depletion

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3