Abstract
AbstractTranscriptional regulatory changes have been shown to contribute to phenotypic differences between species, but many questions remain about how gene expression evolves. Here we report the first comparative study of nascent transcription in primates. We used PRO-seq to map actively transcribing RNA polymerases in resting and activated CD4+ T-cells in multiple human, chimpanzee, and rhesus macaque individuals, with rodents as outgroups. This approach allowed us to measure transcription separately from post-transcriptional processes. We observed general conservation in coding and non-coding transcription, punctuated by numerous differences between species, particularly at distal enhancers and non-coding RNAs. We found evidence that transcription factor binding sites are a primary determinant of transcriptional differences between species, that stabilizing selection maintains gene expression levels despite frequent changes at distal enhancers, and that adaptive substitutions have driven lineage-specific transcription. Finally, we found strong correlations between evolutionary rates and long-range chromatin interactions. These observations clarify the role of primary transcription in regulatory evolution.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献