Author:
Fricke William M.,Brill Steven J.
Abstract
The RecQ DNA helicases human BLM and yeast Sgs1 interact with DNA topoisomerase III and are thought to act on stalled replication forks to maintain genome stability. To gain insight into this mechanism, we previously identifiedSLX1andSLX4as genes that are required for viability and for completion of rDNA replication in the absence ofSGS1–TOP3. Here we show thatSLX1andSLX4encode a heteromeric structure-specific endonuclease. The Slx1–Slx4 nuclease is active on branched DNA substrates, particularly simple-Y, 5′-flap, or replication forkstructures. It cleaves the strand bearing the 5′ nonhomologous arm at the branch junction and generates ligatable nicked products from 5′-flap or replication fork substrates. Slx1 is the founding member of a family of proteins with a predicted URI nuclease domain and PHD-type zinc finger. This subunit displays weakstructure-specific endonuclease activity on its own, is stimulated 500-fold by Slx4, and requires the PHD finger for activity in vitro and in vivo. Both subunits are required in vivo for resistance to DNA damage by methylmethane sulfonate (MMS). We propose that Sgs1–Top3 acts at the termination of rDNA replication to decatenate stalled forks, and, in its absence, Slx1–Slx4 cleaves these stalled forks.
Publisher
Cold Spring Harbor Laboratory
Subject
Developmental Biology,Genetics
Cited by
183 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献