Abstract
AbstractThe bacterial cell wall is primarily composed of a mesh of stiff glycan strands cross-linked by peptide bridges and is essential for safeguarding the cell. The structure of the cell wall has to be stiff enough to bear the high turgor pressure and sufficiently tough to ensure protection against failure. Here we explore the role of various design features of the cell in enhancing the toughness of the cell wall. We explain how the glycan strand length distribution and the degree of cross-linking can play a vital role in ensuring that the cell wall offers sufficient resistance to propagation of cracks. We suggest a possible mechanism by which peptide bond hydrolysis can also help mitigate this risk of failure. We also study the reinforcing effect of MreB on the cell wall and conclude that the cross-linked structure of the cell wall plays the more important role in safeguarding against mechanical failure due to cracking.
Publisher
Cold Spring Harbor Laboratory